咨询QQ:
      杂志订阅

      编辑

      网管

      培训班

      市场部

      发行部

电话服务:
 010-82024984
 010-82024981
欢迎, 客人   会员中心   帮助   合订本   发布信息
设为首页 | 收藏本页
  • 国际电气工程先进技术译丛:本书所涉及的问题包括不同类型的可再生能源发电及其输配电、存储和保护。另外,还包括用于可再生能源发电机组无升压变压器直接并网的中压变换器的发展、大规模可再生能源发电的并网准则和弹性分析、有功功率和频率控制以及HVDC(高压直流)输电。

    本书重点介绍了大规模可再生能源发电与现有电网并网的问题。本书所涉及的问题包括不同类型的可再生能源发电及其输配电、存储和保护。另外,还包括用于可再生能源发电机组无升压变压器直接并网的中压变换器的发展、大规模可再生能源发电的并网准则和弹性分析、有功功率和频率控制以及HVDC(高压直流)输电。同时,还介绍了用于大规模可再生能源电力系统控制和集成的新兴SMES(超导磁储能)技术。由于大规模分布式可再生能源电力系统的保护与单向潮流的现有保护系统不同,本书还介绍了一种用于与智能电网现状相关的可再生能源发电机组的新型保护技术。 
      
      原书前言
      
      主编、编委会和审稿专家
      
      第1章可再生能源系统不确定性建模技术的分类研究1
      
      1.1简介1
      
      1.2概率方法2
      
      1.2.1蒙特卡洛模拟法2
      
      1.2.2点估计法3
      
      1.2.3基于场景的决策 4
      
      1.3风力发电和负荷的不确定性建模 5
      
      1.3.1风力发电建模 5
      
      1.3.2负荷的概率建模 6
      
      1.3.3负荷的可能性建模 7
      
      1.4仿真结果 8
      
      1.4.1蒙特卡洛模拟法 9
      
      1.4.2点估计法 10
      
      1.4.3基于场景的方法 10
      
      1.4.4基于混合的方法 13
      
      1.5未来研究方向 14
      
      1.6小结 15
      
      致谢 15
      
      参考文献 15
      
      第2章风电总量的概率建模和统计特征 17
      
      2.1简介 17
      
      2.2风电总量的一般特征 18
      
      2.2.1风电总量的不确定性 18
      
      2.2.2风电总量的波动性 20
      
      2.3独立风电场模型 20
      
      2.3.1风速概率模型 21
      
      2.3.2理想风机输出功率曲线 22
      
      2.3.3理想风电场模型 24
      
      2.3.4非理想化风电场建模 26
      
      2.4地理多样性 27
      
      2.4.1理论基础 28
      
      2.4.2不确定性和波动性推导 28
      
      2.4.3瞬时风电的相关性 29
      
      2.4.4风电变化的相关性 30
      
      2.4.5影响相关性的其他因素 31
      
      2.4.6风电依赖结构 31
      
      2.4.7多变量模型与仿真 33
      
      2.4.8实际问题 34
      
      2.5风电总量模型 34
      
      2.5.1瞬时风电总量模型 34
      
      2.5.2β分布参数选择 35
      
      2.5.3风电总量变化模型 36
      
      2.5.4拉普拉斯分布参数选择 36
      
      2.5.5变化周期的影响 38
      
      2.6风电总量的统计特征 39
      
      2.6.1数据集描述 40
      
      2.6.2不确定性的统计分析 40
      
      2.6.3波动性的统计分析 41
      
      2.6.4容量对不确定性和波动性的影响 42
      
      2.7小结 43
      
      参考文献 43
      
      第3章GaAs太阳电池转换效率的改进 46
      
      3.1简介 46
      
      3.1.1太阳能背景知识 46
      
      3.2薄膜太阳电池的基本结构 48
      
      3.3AR涂层和SWG结构的背景知识 50
      
      3.3.1AR涂层 50
      
      3.3.2蛾眼工作原理 51
      
      3.4纳米光栅结构设计 54
      
      3.5纳米结构仿真的FDTD软件 55
      
      3.5.1FDTD仿真方法的基本原理 55
      
      3.5.2FDTD方法的二维方程 55
      
      3.5.3Lorentz-Drude模型 57
      
      3.6仿真结果与分析 59
      
      3.7不同纳米光栅的最小光线反射 62
      
      3.8小结 63
      
      致谢 64
      
      参考文献 64
      
      第4章新兴SMES技术在能量存储系统和智能电网中的应用 66
      
      4.1简介 66
      
      4.2能量存储技术 67
      
      4.3SMES电路和控制技术 68
      
      4.3.1工作原理 68
      
      4.3.2控制与保护原理 71
      
      4.3.3一种新型数字预测控制方法的原理与实现 73
      
      4.4实验验证与特性分析 76
      
      4.4.1实验样机设计 76
      
      4.4.2实验验证与比较 77
      
      4.5SMES装置的发展现状 83
      
      4.6SMES应用拓扑和性能评估 85
      
      4.6.1基本的VSC和CSC应用拓扑 85
      
      4.6.2电力电网中的集成应用拓扑 87
      
      4.6.3电力电网中SMES的应用 89
      
      4.7SMES在智能电网中的应用前景 94
      
      4.7.1SMES在现代电力系统中的应用案例 94
      
      4.7.2未来智能电网中SMES的应用前景和分析 98
      
      致谢 103
      
      参考文献 103
      
      第5章用于可再生能源发电机组与中压智能微电网直接集成的无升压变压器
      
      的多电平变换器108
      
      5.1简介 108
      
      5.2多电平变换器拓扑 110
      
      5.2.1中性点钳位变换器 112
      
      5.2.2快速充电电容变换器 114
      
      5.2.3模块化多电平级联变换器 115
      
      5.3多电平变换器拓扑的选择 116
      
      5.4变换器电平个数的选择 119
      
      5.5基于FPGA的开关控制器 121
      
      5.6高频链路MMC变换器 123
      
      5.7小结 126
      
      参考文献 127
      
      第6章大规模可再生能源发电的互连规则综述 129
      
      6.1简介 129
      
      6.2电网互连规则的必要性 131
      
      6.2.1资源的可变性与不确定性 131
      
      6.2.2发电厂位置 131
      
      6.2.3发电技术及系统条件 131
      
      6.3电网标准研究 131
      
      6.4电网互连中的主要技术问题 132
      
      6.4.1静态规则 133
      
      6.4.2电能质量 137
      
      6.4.3扰动期间和扰动后的动态规则 139
      
      6.5大规模光伏发电站的电网标准 143
      
      6.6总结和未来趋势 143
      
      6.7小结 144
      
      参考文献 145
      
      第7章大规模可再生能源富电网的弹性分析:基于网络渗流的方法 147
      
      7.1简介 147
      
      7.2系统模型 148
      
      7.3渗流和网络弹性 150
      
      7.4连通性测度-度中心性 153
      
      7.5独立性测度-紧密中心性 154
      
      7.6通信控制测度-介数中心性 156
      
      7.7仿真结果 159
      
      7.8小结 162
      
      参考文献 162
      
      第8章未来电网的频率控制和惯性响应方案 164
      
      8.1简介 164
      
      8.2系统频率响应 168
      
      8.3风力发电的频率响应 172
      
      8.4风力发电频率响应控制器 174
      
      8.4.1风机级控制器 174
      
      8.4.2调节器响应控制器 178
      
      8.4.3风电场级控制器 183
      
      8.4.4电力系统级控制器 184
      
      8.5合成或人工惯性 186
      
      8.6高压直流输电系统提供频率响应 188
      
      8.7小结193
      
      参考文献193
      
      第9章大规模可再生能源的有功功率和频率控制 197
      
      9.1简介197
      
      9.2有功功率控制的传统方案 198
      
      9.2.1主级有功功率/频率控制 198
      
      9.2.2辅助高级控制 199
      
      9.2.3多机四区域电力系统示例 201
      
      9.3适用情况 203
      
      9.3.1市场环境下的功率/频率控制 204
      
      9.3.2可再生能源渗透的功率/频率控制 207
      
      9.3.3互连系统交流/直流输电线下的功率/频率控制 214
      
      9.4先进控制概念在有功功率控制中的应用 220
      
      9.4.1应用于LFC系统的先进LQR控制器设计 220
      
      9.4.2先进控制应用的一般示例 224
      
      9.5小结 226
      
      附录 227
      
      参考文献 228
      
      第10章相关性风电高渗透对电力系统可靠性的影响 230
      
      10.1简介 230
      
      10.2基于非序贯MCS的可靠性评估 231
      
      10.3相关时变元素 232
      
      10.4时变变量表征模型 233
      
      10.5实验结果 235
      
      10.5.1案例1:可变负荷和无风电场 237
      
      10.5.2案例3:约束输电网络 238
      
      10.5.3案例4:三风电场和可变负荷 240
      
      10.6小结 240
      
      参考文献 241
      
      第11章海上风电场的高压直流输电 243
      
      11.1简介 243
      
      11.2海上风电面临的挑战 244
      
      11.3海上电网:交流与直流拓扑 246
      
      11.4海上风能能量变换系统的不同概念 248
      
      11.5海上风能高压直流输电的线路换相变换器 249
      
      11.6海上风电高压直流输电的电压源型变换器 251
      
      11.7海上风电高压直流输电的新趋势 252
      
      11.7.1混合拓扑 252
      
      11.7.2模块化多电平变换器 255
      
      11.8电缆技术257
      
      11.9小结 258
      
      参考文献 259
      
      第12章风电场保护 262
      
      12.1简介 262
      
      12.2传统发电机组布局 263
      
      12.3风电场布局 263
      
      12.4风电场与传统发电保护 263
      
      12.5故障穿越标准、保护和协调控制 264
      
      12.6案例研究 266
      
      12.6.1所研究电网 266
      
      12.7风电场并网动态故障研究 267
      
      12.7.1模型阶次对故障电流或电压的影响 267
      
      12.7.2时间步长对故障电流或电压的影响 267
      
      12.7.3短路电阻对故障电流或电压的影响 268
      
      12.7.4风力发电机组比较故障分析 269
      
      12.8研究结果的意义 270
      
      12.8.1类型1和类型2风力发电机组的保护性能 272
      
      12.8.2类型3风力发电机组的保护性能 273
      
      12.8.3类型4风力发电机组的保护性能 273
      
      12.8.4风力发电机组的保护性能总结 274
      
      12.9小结 274
      
      附录 275
      
      参考文献 277
      
      第13章风电场和FACTS设备对距离继电器性能的影响 278
      
      13.1简介 278
      
      13.2距离继电器建模 280
      
      13.3基于变换器的系统对距离继电器性能的影响 285
      
      13.3.1风电场(DFIG方案) 285
      
      13.3.2测试系统 286
      
      13.3.3STATCOM288
      
      13.3.4UPFC 291
      
      13.3.5串联补偿 293
      
      13.3.6非滤波频率分量输入信号在距离继电器阻抗估计中的作用 295
      
      13.4以Prony法为滤波技术的距离保护算法 300
      
      13.4.1Prony法 300
      
      13.5距离保护算法分析 302
      
      13.5.1接触误差补偿(风电场) 302
      
      13.5.2接触误差补偿(STATCOM) 303
      
      13.5.3接触误差补偿(UPFC) 303
      
      13.5.4接触误差补偿(串联补偿) 303
      
      13.5.5接触误差补偿(实际故障事件) 304
      
      13.6结果分析 306
      
      13.7小结 306
      
      参考文献 307
      
      第14章大规模海上风电场网状VSC-HVDC输电系统的保护方案 309
      
      14.1简介 309
      
      14.2多端网状直流风电场网络 310
      
      14.2.1多端网状直流风电场拓扑 310
      
      14.2.2保护测试研究的超级电网结构 311
      
      14.3大规模网状电力系统直流故障分析 313
      
      14.3.1适合直流故障分析的电缆建模 313
      
      14.3.2直流母线故障 315
      
      14.4网状直流系统保护方案 315
      
      14.4.1大功率直流开关设备配置 316
      
      14.4.2直流断路器继电器协调关系 318
      
      14.4.3保护方案 319
      
      14.4.4无中继通信的保护选择 321
      
      14.5直流风电场保护仿真结果 323
      
      14.5.1直流径向电缆短路/接地故障条件 324
      
      14.5.2直流回路电缆短路/接地故障条件 326
      
      14.5.3直流母线短路/接地故障条件 326
      
      14.5.4电缆模型比较 328
      
      14.6小结 329
      
      参考文献 329
      
      第15章新兴无刷双馈磁阻风力发电机组的控制 331
      
      15.1简介 331
      
      15.2动态模型 333
      
      15.3控制器设计 334
      
      15.4控制原理 336
      
      15.4.1矢量控制 336
      
      15.4.2磁场定向控制 338
      
      15.4.3BDFRG风机工作条件 338
      
      15.4.4最优控制策略 339
      
      15.4.5风机特性 339
      
      15.5初步实验结果 340
      
      15.6小结 343
      
      参考文献 344
      
      第16章间歇性风力发电的能源中心管理 346
      
      16.1简介 346
      
      16.1.1问题提出346
      
      16.1.2相关工作回顾 348
      
      16.2风险管理 348
      
      16.3问题描述 350
      
      16.3.1能源中心建模 350
      
      16.3.2火电机组约束 351
      
      16.3.3风电、电价和需求等关键问题的不确定性建模 352
      
      16.3.4决策变量 355
      
      16.3.5目标函数 356
      
      16.4仿真结果 356
      
      16.4.1数据 356
      
      16.4.2Pareto最优前沿测定 358
      
      16.4.3最终解的选择 359
      
      16.5讨论 366
      
      16.6小结 366
      
      附录 366
      
      附录A场景缩减技术 366
      
      附录BPareto最优性 367
      
      附录C模糊满意度方法 367
      
      参考文献 368
      
      第17章基于IEC公共信息模型的智能电网交互性和知识表示方法 370
      
      17.1简介 370
      
      17.2智能电网的概念 371
      
      17.3交互性理论 372
      
      17.3.1工程系统的交互性 375
      
      17.3.2交互性和面向服务的体系结构 376
      
      17.3.3交互性和CIM 377
      
      17.4应用案例 377
      
      17.5智能电网标准架构 378
      
      17.6IECCIM 380
      
      17.6.1CIM作为电力域的本体 382
      
      17.6.2CIM与其他标准的协调统一 382
      
      17.7信息集成与知识表示 383
      
      17.8小结 384
      
      参考文献 385

    邮购信息:
      地    址:北京市西城区北三环中路甲29号华尊大厦A座405室(邮编:100029)
      电    话:010-82024981-12  发行部
           邮    箱:wangy@upsapp.com
      户    名:北京三之联广告有限公司
      开户行:交通银行股份有限公司北京北三环中路支行
      账   号:110060567018150018791

    ISBN:978-7-111-53592-8     出版社:机械工业出版社     出版日期:2016-7-22   装帧:平装    定价:¥119.00  类别:电力

  •